Injection Structures and the Ershov Hierarchy

Francis Adams

Georgia State University

January 17, 2019

- Equivalence Structures and Isomorphisms in the Difference Hierarchy by Remmel, LaForte, and Cenzer
- Computability-Theoretic Properties of Injection Structures by Remmel, Harizanov, and Cenzer

Injection Structures

- Injection structures are (A, f) where f is an injection on A.
- A is partitioned into finite orbits, ω -orbits, and \mathbb{Z} -orbits.
- ullet An injection structure ${\cal A}$ has a character, identifying its finite orbits.

$$\chi(\mathcal{A}) = \{(k, n) : n, k > 0 \text{ and } \mathcal{A} \text{ has at least } n \text{ orbits of size } k\}$$

• (A, f) is computable if both A and f are computable.

Computable Injection Structures: Existence

Say a set $K \subseteq \mathbb{N}^+ \times \mathbb{N}^+$ is a character if for all n and k, $(k, n+1) \in K$ implies $(k, n) \in K$.

Proposition (RHC)

- If (A, f) is computable, then $\chi(A)$ is Σ_1^0 .
- If K is a Σ_1^0 character, then there is a computable injection structure with character K and any number of ω -orbits or \mathbb{Z} -orbits.

Computable Injection Structures: Uniqueness

Say a computable structure \mathcal{A} is Δ_n^0 -categorical if for any computable structure \mathcal{B} isomorphic to \mathcal{A} , there is a Δ_n^0 isomorphism between them.

Theorem (RHC)

Let A be a computable injection structure.

- ullet ${\cal A}$ is computably categorical iff ${\cal A}$ only has finitely many infinite orbits.
- A is Δ_2^0 categorical iff A has only finitely many ω -orbits or finitely many \mathbb{Z} -orbits.
- A is Δ_3^0 categorical.

Complexity of Injection Structures

Two ways to consider complexity of the structure:

• Let f be computable and restrict f to a set A where A is non-computable.

Complexity of Injection Structures

Two ways to consider complexity of the structure:

- Let f be computable and restrict f to a set A where A is non-computable.
- Let A be computable but allow f to be non-computable.

Ershov Hierarchy of Sets

A set A is Δ^0_2 if there is a computable function $g: \mathbb{N} \times \mathbb{N} \to \{0,1\}$ so $\chi_A(x) = \lim_{s \to \infty} g(x,s)$.

Within the Δ_2^0 sets, say A is n-c.e. for n>1 if there is g as above so g(x,0)=0 and $\{s:g(x,s)\neq g(x,s+1)\}$ has size at most n. Also, say that A is $\omega-c.e$. if there is a computable function g as above and a computable function b so $\{s:g(x,s)\neq g(x,s+1)\}$ has size at most b(x).

This is also called the difference hierarchy, since A is n-c.e. iff $A = Y \setminus Z$ where Y is c.e. and Z is (n-1)-c.e.

A function f is Δ_2^0 if there is a computable function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ so $f(x) = \lim_{s \to \infty} g(x, s)$.

Within the Δ_2^0 functions, say f is n-c.e. for n>1 if there is g as above so $\{s:g(x,s)\neq g(x,s+1)\}$ has size less than n. Also, say that f is $\omega-c.e$. if there is a computable function g as above and a computable function g so g is g is g in g and g is g in g in g is g in g in

Say f is graph-n-c.e. if the graph of f is n-c.e., and similarly for graph- $\omega-c.e.$.

The notions of $\alpha-c.e.$ and graph $-\alpha-c.e.$ function were also studied independently by Khoussainov, Stephan, and Yang, including for α a computable ordinal greater than ω .

Facts about $\alpha - c.e.$ functions from RLC:

- An $\alpha c.e.$ function is graph $-\alpha c.e.$
- For all n > 0 there is an (n + 1) c.e. function which isn't graph-n c.e..
- There is a graph -2 c.e. function which isn't $\omega c.e.$.

If we want to refine Δ_2^0 -isomorphisms to isomorphisms within the Ershov hierarchy, graph $-\alpha-c.e.$ functions are more appropriate. This is because, from RLC, if f is graph $-\alpha-c.e.$ then so is f^{-1} , but there is a 2-c.e. bijection $f:\mathbb{N}\to\mathbb{N}$ so f^{-1} isn't even $\omega-c.e.$

A computable injection structure \mathcal{A} is Δ_2^0 categorical iff \mathcal{A} has only finitely many ω -orbits or finitely many \mathbb{Z} -orbits. Can we improve this?

Theorem (RHC)

There are two computable injection structures that are not $\omega-c.e.$ isomorphic.

Open Question: What about graph -n-c.e. or $\alpha-c.e.$ for higher α ?

Σ_1^0 Injection Structures

Proposition (RHC)

For any Σ_1^0 injection structure A, there is a computable structure B and a computable isomorphism from B onto A.

Π_1^0 Injection Structures

Theorem (RHC)

- If A is a Π_1^0 injection structure, then $\chi(A)$ is Σ_2^0 , and for any Σ_2^0 character K there is a Π_1^0 structure with character K and any number of infinite orbits.
- If A, B are isomorphic Π^0_1 structures with only finitely many ω -orbits, then A and B are Δ^0_2 isomorphic.

Π_1^0 Injection Structures

Proposition

If (A, f) and (B, g) are isomorphic Π_1^0 structures so f, g have no infinite orbits, then A, B are graph-2 - c.e. isomorphic.

Let $A = \mathbb{N} \setminus C$ and $B = \mathbb{N} \setminus D$ where C, D are c.e., enumerated in stages C_s, D_s . Define ϕ in stages ϕ_s :

At stage s:

- Find $O_f(i)$, $O_g(j)$ for $i, j \leq s$.
- Enumerate C_s, D_s

Π_1^0 Injection Structures

Proposition

If (A, f) and (B, g) are isomorphic Π_1^0 structures so f, g have no infinite orbits, then A, B are graph-2 - c.e. isomorphic.

- If any orbits $O_f(i)$, $O_g(j)$ intersect C_s , D_s , any offending pairs in ϕ_s are removed and are unavailable.
- If some orbit $O_f(i)$ is unmapped, available to be used, and of the same size as an untargeted, available orbit $O_g(j)$, then map the first orbit to the second using ϕ_s .

n-c.e. Injection Structures

Proposition

- If (A, f) and (B, g) are isomorphic 2 c.e. structures so f, g have no infinite orbits, then A, B are graph -2 c.e. isomorphic.
- If (A, f) and (B, g) are isomorphic n c.e. structures so f, g have no infinite orbits, then A, B are graph-2n c.e. isomorphic.

Work to Do

- What if the *function* is n c.e. instead of the underlying set?
- Strategy for negative results: Start with a standard computable structure and construct a Π_1^0 structure by removing orbits, in a way to defeat potential isomorphisms.

Thank you.